skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jacobsohn, L G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. X-ray detectors are commonly used for medical, crystallography and space physics applications. Most of the current x-ray detectors use cadmium zinc telluride (CZT) as the active medium. This report investigates high density semiconducting and scintillating glasses as potential alternatives to CZT. For the semiconducting glasses, samples composed of xCuO–((1−x)/2)PbO–((1−x)/2)V2O5 and xFeO–((1−x)/2)PbO–((1−x)/2)V2O5, for the scintillating glasses, samples composed of xGd2O3+yWO3+(1−x−y)2H3BO3, doped with 1–6% Eu3+ or Tb3+, were investigated in this study. The glass-making conditions, density, Raman spectroscopy analysis, photoluminescence excitation and emission spectra, as well as conductivity measurements performed on various samples, are reported. The interaction of x-rays with all the glass samples was simulated using GATE software, and their mass attenuation coefficients were calculated and compared with CZT. 
    more » « less
  2. Abstract The fabrication of ceramic scintillators by laser sintering is briefly reviewed and current limitations discussed. The experimental work focused on the fabrication and characterization of undoped and Pr-doped Lu 3 Al 5 O 12 (LuAG). X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the structure of the sintered ceramics, with XRD results suggesting the absence of residual thermal stresses. Collectively, Raman results suggested the incorporation of Pr to affect the structure and its dynamics. Broadening the peaks of the ceramics in relation to those from the single crystal revealed the presence of structural disorder. Scanning electron microscopy revealed intergrain porosity thus explaining the lack of optical transparency. Energy-dispersive X-ray spectroscopy (EDX) measurements showed Pr to be homogeneously distributed. Radioluminescence measurements under X-ray excitation as a function of the temperature were used to investigate intrinsic defects of the host, including anti-sites and F-type defects. 
    more » « less